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1 Introduction

As computers have become more powerful, they can analyse ever-larger datasets. Entities such
as Google, governments, and the Internet of Things are creating larger and more complex
datasets with higher volume, velocity, and variety—dubbed “big data”. [1] This big data is
analysed in a variety of ways. One common way is supervised machine learning, [2] which
builds predictive models for a target variable using the remaining data features/variables by
iteratively fitting a function to the data. Within supervised machine learning, there exist many
algorithms such as support vector machines, decision trees, and deep learning (deep neural
networks). The last decade has seen deep neural networks—artificial neural networks consisting
of multiple hidden layers and a multitude of neurons—as the forerunner in supervised machine
learning as they show consistent improvement in performance and superior generalisability on
large datasets whereas other models plateau in performance. [3] However, deep learning is
considered a black box; it is unclear why it 1s successful. [4] Since depth is the key differentiator
between neural networks and other models, it becomes essential to answer why and to what
extent increasing depth increases neural network performance. Understanding the relationship
between depth and accuracy is key to building more accurate networks that can be trained faster.
Thus, the research question “How does the depth of a neural network impact its test accuracy in
the MNIST digit classification problem? What is the optimal depth for this particular problem?”
was investigated using the MNIST dataset [5] to gain insight into the broader pattern of the effect

of network depth on test accuracy.



1.1 The MNIST dataset

The MNIST database is an example of big data. It consists of 28x28 greyscale images of
handwritten digits with a training set of 60,000 images and a test set of 10,000 images. It is often

used to test learning techniques on real-world data as it has been cleaned and preprocessed.

In both sets, each image is represented as a row with 785 columns: 784 greyscale (0 to 255)
values, each corresponding to a pixel, and a column with the ground-truth value ie. the correct

classification of the digit. Thus, each image can approximately be represented with the table

below:
Pixel 0 | Pixel 1 | Pixel 2 | ... Pixel 783 | Digit
0 128 255 0 2

In the MNIST digit classification problem using this dataset, supervised machine learning
algorithms such as deep neural networks fit models using the 784 greyscale pixel values to

predict the digit they represent. [5]

1.2 Artificial Neural Networks

Artificial neural networks are a machine learning model inspired by biological nervous circuits.

They consist of layers of neurons feeding information forward in sequence in an algorithm called




forward propagation. Each neuron is a numerical value, determined as the output of an activation

function (any differentiable function) passed an unscaled number.

Figure 1: Example Neural Network for MNIST Dataset Classification [6]
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The example network above for the MNIST dataset contains three layers. The input layer—the
first layer—consists of 784 neurons (represented in orange), each without an activation function,
as there are 784 features (columns) in the dataset. Each input neuron holds the greyscale value of

a pixel. The output layer contains 10 neurons (represented in blue) with a softmax activation



function as the MNIST classification problem has 10 classes (digits). The softmax function
returns the index of the output neuron with the highest value, which is equal to the digit it
corresponds to, as networks are trained to predict higher values on digits they are confident the

greyscale values match.

Between the two are “hidden layers” of neurons (represented in green). The number of hidden
layers is the depth of the neural network. The above example has a depth of 1. In every hidden
layer, each neuron is connected to each neuron in the layer preceding and succeeding it with a
weight parameter, each weight represented as a line between two neurons. Each neuron also has

a bias parameter associated with it. [7] Forward propagation is defined such that the value of

any neuron is the weighted sum of the preceding neurons’ values and the bias passed into an
activation function. [7] In the above network, this is visualised as the lines between neurons
correspond to weighted values of the previous layer’s neurons all being inputted into a neuron in

the next layer.

After forward propagation, the network’s predictions are tested against the ground-truth
classification and the error is quantified in a cost function—a continuous and differentiable
function of the error of classification/regression for a given set of weight and bias parameters.

Supervised machine learning uses an algorithm called gradient descent—iteratively adjusting

parameters by computing and adding the downward gradient of the cost function for the current
set of parameters, moving from a high point on the cost function (high error) to a lower point

thereon (lower error)—for training/learning.



Neural networks learn through a specific variant of gradient descent known as backpropagation,

which involves computing layer gradients from the gradients of the forward layer, going
backward from the output layer. The learning rate is a scalar multiplier controlling the rate of
gradient descent. Gradients are calculated as the product of the learning rate and the partial
derivative of the cost function with respect to a weight/bias at the point defined by the current
weights and biases. Through backpropagation, these gradients are then echoed backward through
the layers of a neural network, adjusting each parameter. Neural networks commonly experience

vanishing gradients (tending to 0) or exploding gradients (tending to infinity); an annealed

learning rate addresses this issue.

Neural networks learn iteratively, performing backpropagation as they iterate over the dataset,
cach full iteration over the dataset termed an epoch. If done optimally, this iterative process
balances bias (underfitting to a dataset) and variance (overfitting to a dataset) to produce
networks that generalise well. Regularisation techniques, which punish high weight values by

either dropping them or adding them to the cost function, also address overfitting. [10]

Neural networks are configured with hyperparameters—values set by the model builder for

properties such as as learning rate, activation functions, and depth. Whether a neural network of

some depth is considered deep or shallow is dependent on the problem it is solving. [7]



1.3 The Significance of Depth

Although neural networks were first explored in the 1950°s and 1960°s with the invention of the

perceptron, they have become popular only in recent years [6].

Starting in 2011, deep neural networks have become commonplace due to their ability to
generalise well to unseen datasets. [4] However, it is unclear why deep neural networks

outperform other models and shallow networks and generalise better.

In 2015, Andrew Ng, the founder of Google Brain and a leading researcher in deep learning,
highlighted that since technology now permits more intensive computation, neural networks have
been able to grow both wider and deeper. Unlike other methods of machine learning, their
performance continues to increases (rather than plateau) with more data as networks can be made

larger to better model big data without overfitting or underfitting. [3]



Figure 2 [3]
Graph showing deep learning’s continuous performance increase and other models’ plateauing

performance with additional data
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Research by Kurt Hornik of Technische Universitit Wien Austria and Maxwell Stinchcombe and
Halbert White of the University of California, San Diego has established that multilayer
feedforward networks such as artificial neural networks are universal approximators ie. neural
networks can approximate any function to an arbitrary degree of accuracy provided there are
enough neurons. Thus, with enough neurons and given enough data, a neural network could
perfectly model any function. [8] This could explain why the performance of a deep neural

network does not plateau with additional data.

In practice, as universal approximators [8], despite increased numerical instability (vanishing and
exploding gradients) and non-robustness [4], deep networks tend to outperform shallow networks

as they generalise better. Shallow networks require exponentially more neurons and tend to



memorise. [9] Although it has been argued that deep networks generalise well as they find flat
minima on the cost function, they have also been shown to generalise well with sharp minima on
a similar reparameterized cost function. [4] Therefore, it appears that the number of hidden
layers in a neural network, rather than the parameter space it generates, is responsible for its
improved generalisation. Andrew Ng suggests the explanation that deeper networks extract more

abstract features (patterns) in data as they learn layer-by-layer. [3]

However, the extent to which his hypothesis is true and remains unclear. This raises the question:
what is the effect of network depth on its ability to generalise as reflected in its accuracy on an

unseen dataset?

2 Research Question

How does the depth of a neural network impact its test accuracy in the MNIST digit

classification problem? What is the optimal depth for this particular problem?

3 Investigation

In order to investigate the relationship posed by the research question, an experiment was

conducted. Tt was hypothesised that accuracy would increase with additional depth until a certain
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depth, after which performance would “degrade” and both train and test accuracy would decrease
due early accuracy saturation in initial layers and ‘unlearning’ from subsequent forward

propagation. [11]

3.1 Controls and Method Choices

In order to isolate the effects of neural network depth, other hyperparameters of each network

were held (approximately) constant across trials. Controlled hyperparameters included:

1. Number of neurons (and number of weights): ~1800 neurons

Variations in the number of neurons in a feedforward network affect its bias and variance and
hence accuracy. Fewer neurons increase bias and more neurons increase variance. They also
affect a network’s train and test error. More neurons allow approximation that is closer to the
data as there are more parameters to adjust through gradient descent. Thus networks with more
neurons may be more prone to overfitting. [9] Since variations in the number of neurons can
have unpredictable effects on train and test accuracy by introducing proneness to over or
underfit, in order to isolate the effects of network depth, every neural network trained consisted
of approximately 1800 neurons. 1800 was chosen as it is a common multiple for most depths that

still yielded a reasonable network size and complexity for the datasets used.

2. Epochs trained: One epoch
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The number of epochs on which a neural network trains is generally proportional to the
network’s accuracy to a certain point, after which it overfits. Thus variations in the number of
epochs used to train a network affect test accuracy. To improve data precision and accuracy, all

networks were trained on one epoch of training data.

3. Learning rate and Gradient Descent optimiser: default Adam Optimiser

The learning rate controls the rate of gradient descent and hence how fast a neural network fits
data. Since the training is controlled to one epoch, higher learning rates in that time could either
lead to faster convergence (higher test accuracy after one epoch) or divergence (very low test
accuracy). Conversely, lower learning rates would lead to slower convergence and a higher
accuracy than divergence but lower than faster convergence. [12] To prevent these unpredictable
effects on data, the default TensorFlow value (0.01) for the Adam optimiser learning rate (alpha)

was used in all trials. [13]

Even with a consistent learning rate, every gradient descent optimiser converges at a different
rate. [14] To ensure consistency, the default Adam optimiser was used across all trials as it does
not get stuck on saddle points and converges relatively quickly by using a windowed average of

gradients, which points each step more directly towards a minimum, scaled to optimise step size.

[15]
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4. Regularisation: Dropout with 0.2 probability

Regularisation reduces overfitting and thus influences convergence and test accuracy. Dropout
regularisation [16] was used in every layer of every network with a 0.2 chance of a neuron
dropping out to provide consistent regularisation. Dropout was chosen over L, or L, norm
regularisation as it prevents the emergence of specific learning pathways and thus reduces
interdependent learning, making each neuron a better learner and allowing better generalisation.

[17]

5. Cost function: Cross-entropy

The cost function of a neural network affects both the rate of convergence as well as the extent it
can converge. Additionally, the extent of convergence during training for a cost function is
dependent on the number of hidden layers in a neural network. [18] Thus to isolate the effects of

depth, cross-entropy cost was used. Cross-entropy cost is defined as:

LY)=L=YIn(Y)+(1-Y)In(1-Y")[19]
Where Y ' is the ground truth m x 10 matrix, Y is the is the neural network output layer 10 x 1

matrix, and m is the number of datapoints. This equation was chosen as it accounts for the
confidence in all 10 digit predictions, rewarding high confidence in the correct classification and
punishing even low confidence in incorrect digit classifications. Furthermore, the product of
these matrices collapses to a scalar, thus no additional summation is required, reducing

computation time due to NumPy’s distributed linear algebra calculations.
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6. Train/test datasets: TensorFlow/Keras MNIST datasets

All models were trained on the same train set and tested on the same test set to prevent precision
losses caused by variations in the distribution, features, and complexity of the train/test sets. The
TensorFlow/Keras MNIST [5] TensorFlow datasets were downloaded and used with the call:

tf.keras.mnist. [20]

3.2 Method

In order to conduct this experiment, a Python program was written using the TensorFlow-GPU
python module (see appendix 1). TensorFlow is an open source software library developed by
the Google Brain team for fast numerical computation. It is used often in the ML community for
its Deep Learning support. [21] In this experiment, TensorFlow’s Keras sequential model was

used.

For each trial, the MNIST digit dataset was first loaded into TensorFlow and then split into a
train and test set. A 1800 neuron neural network with n hidden layers was then defined using a
flattened keras sequential model. As commanded by the dataset, the neural network had 784
input neurons, one per pixel in each 28x28 image, and 10 output neurons, each corresponding to
a digit 0-9. With the exception of n = 0, which had no additional neurons, each hidden layer had

L% Jneurons, so that all networks had exactly/approximately 1800 neurons. All hidden

neurons had the same Rectified Linear Unit (ReLLU) activation function, a popular function as it
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does not experience gradients approaching 0 at high neuron values, and dropout regularisation.
[16] The output neurons used a softmax activation so as to return the digit predicted. The model
was then compiled with an Adam optimiser, a sparse categorical cross-entropy cost function, and

accuracy as a comparison metric. [20]

After compilation, the model was trained on the train set. Train cross-entropy cost and train
accuracy (both from the history object returned by TensorFlow) were then recorded in the
program memory with corresponding variables. Next, the model was tested on the test set. Then,

as with the train figures, test cross-entropy loss and test accuracy were recorded as variables.

Finally, at the end of each trial, data recorded in variables was appended to a CSV file containing
the results of all trials. The console log was then appended to a text file containing previous

console logs.

Five trials were conducted for various depths: 0 to 15, 20, 25, 50, 75, 100, using the following
hardware:

OS: Windows 10

Python version: Python 3.6.5

GPU: GeForce GTX 1070t1

CPU: AMD Ryzen 2700x @ 4.05 GHz

RAM: 32GB DDR4 RAM

Memory: 1TB SSD, 2TB HDD



Motherboard: X470 motherboard

3.3 Raw Data

The loss, accuracy, and time data recorded from the trials can be seen in tables 1 and 2 below.

Table 1: Raw data for depths 0-10)

15



Train Cross-Entropy

Test Cross-Entropy

Depth | Trial Loss Train Accuracy Loss Test Accuracy| Train Time Test Time
1 0.4761621626 0.87383 0.3077758218 0.9151 4.7608606815 | 0.5097680092

2 0.4698261185 0.87703 0.3072223457 0.9139 4,5579767227 | 0.4596931934

3 0.4671640720 0.87852 0.3045051179 0.9161 4,64059807205 | 0.4847297668

4 0.4690858537 0.87815 0.3065221800 0.9137 4,4757378101 | 0.4536B838531

4] 5 0.4705009760 0.87765 0.3073582830 0.9157 4,8082456589 | 0.4937450886
1 0.1943779687 0.94195 0.0888630210 0.9733 8.0430274010 | 0.5628485680

2 0.1923766260 0.94158 0.1047269804 0.9668 79481167793 | 0.5958974361

3 0.1916163096 0.94170 0.0971283814 0.9707 8.1733152866 |0.5938947201

4 0.1939208512 0.94152 0.0916829982 0.9704 8.0645678043 | 0.5818772316

1 5 0.1913587008 0.94192 0.0974784707 0.9707 8.2522304058 |0.5948970318
1 0.2009798698 0.93983 0.1071780019 0.9653 8.8658559322 | 0.5878858566

2 0.2013221687 0.93845 0.0989170284 0.9708 9.1037683487 | 0.6149260958

3 0.2003030914 0.93917 0.0982761272 0.9690 9.2583317757 | 0.6740159988

4 0.2001964616 0.93967 0.1042706804 0.96%4 9.0129992962 | 0.6009051800

2 5 0.2058711999 0.93670 0.1116843889 0.9640 9.1477451324 | 0.6629989147
1 0.2315318815 0.92987 0.1003622158 0.9654 9.1305851936 | 0.5898885727

2 0.2348403364 0.92862 0.1145069750 0.9653 9.1887254715 | 0.6810257435

3 0.2332591042 0.92855 0.1345785077 0.595%4 9.2659249306 | 0.6009045416

4 0.2290608674 0.93048 0.1302089310 0.9616 9.3009722233 | 0.6139242649

3 5 0.2268666457 0.93115 0.1308576213 0.9607 9.4311227798 | 0.6419668158
1 0.2637906086 0.92157 0.1399214161 0.9609 9.8646242619 | 0.6089186668

2 0.2697438648 0.91858 0.1308829525 0.9618 9.3781325817 | 0.6159257889

3 0.2671167338 0.91997 0.1240778937 0.9622 9.8357996941 | 0.7311024666

4 0.2663127440 0.92025 0.1274340543 0.9608 99295210838 | 0.6289470196

4 5 0.2678683809 0.92022 0.1214606874 0.9656 10.0441343784 | 0.6680061817
1 0.2992226158 0.91165 0.1408742020 0.9593 10.6816542149 | 0.7861855030

2 0.3007748898 0.91048 0.1656398301 0.9534 11.1653239727 | 0.7321028709

3 0.2979290443 0.91292 0.1353245005 0.9599 109324369431 | 0.6449723244

4 0.3035137490 0.90972 0.1248760151 0.9625 10.6798722744 | 0.6930444241

5 5 0.3026451615 0.91123 0.1711203099 0.9527 11.0836787224 | 0.8162305355
1 0.3375270786 090202 0.1693925087 0.9530 119176404476 | 0.6800251007

2 0.3402227739 0.90055 0.1400181713 0.9615 11.7435491085 | 0.7611465454

3 0.3447742789 0.90005 0.1340402507 0.9658 12.0719530582 | 0.7290978432

4 0.3336121716 0.90432 0.2108535775 09383 11.8029258251 | 0.6780223846

6 5 0.3501127989 0.89868 0.1482577787 0.9592 11.9800446033 | 0.6569895744
1 0.4068281010 0.87877 0.1571252103 0.9596 12.5750021935 | 0.7791743279

2 0.3819753614 0.88865 0.1752912307 0.9549 127997982502 | 0.8432707787

3 0.3833223607 0.88878 0.1640285786 0.9538 12.7684643269 | 0.7060637474

4 0.3823063167 0.88848 0.1499018869 0.9617 12.4236562252 | 0.7381124496

7 5 0.3828229920 0.88970 0.1860997357 0.9539 12.6590495110 | 0.8192346096
i 0.4433536317 0.87203 0.1819863410 0.9541 14.0223655701 | 0.8072164059

2 0.4400050123 0.87012 0.2083913109 0.9521 13.7557134628 | 0.7461247444

3 0.4526862318 0.86702 0.1808164338 0.9560 13.5823709965 | 0.7080667019

4 0.4332450176 0.87328 0.1998844436 0.9525 13.7165598869 | 0.8022091389

8 5 0.4478791666 0.86885 0.1643484224 0.9550 13.8418254852 | 0.7541370392
v 0.5231933431 0.83853 0.1772508284 0.9517 15.0216343403 | 0.8362610340

2 0.5286184588 0.83948 0.2054764325 0.9492 14.8550405502 | 1.0015095049

3 0.5192941734 0.84267 0.1869598641 0.9518 15.0436542034 | 0.8592948914

4 0.5337465577 0.83987 0.1980161009 0.9481 15.0548329353 | 0.8332560062

9 5 0.5198361529 0.84522 0.2048674061 0.9476 149480202198 | 0.7641513348
& | 0.6563744600 0.78487 0.2267415938 0.9469 15.8656299114 | 0.8262457848

2 0.6340705788 0.79403 0.2648368831 0.9398 16.0108025074 | 0.8092193604

3 0.6122532713 0.81195 0.2172055275 0.9463 15.7377030849 | 0.8002059460

4 0.5978583149 0.81773 0.2071263748 0.9462 15.8338210583 | 0.9484293461

10 5 0.6500325544 0.79120 0.2397010079 0.9338 16.0421376228 | 0.8112220764
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Table 2: Raw data for depths 10-100

Train Cross-Entropy Test Cross-Entropy

Depth | Trial Loss Train Accuracy Loss Test Accuracy| Train Time Test Time
1 0.7142091863 0.77003 0.2480565375 0.9401 17.2996747494 | 0.8422694206
2 0.7367923003 0.75378 0.2640802324 0.9361 17.4654357433 | 0.8733155727
3 0.8022513462 0.71413 0.2659610394 0.9350 17.3631610870 | 0.8302485943
4 0.7232665794 0.76623 0.2350593829 0.9398 17.2319509983 | 0.9273977280
11 5 0.8091586837 0.70435 0.3044650680 0.9155 17.3791537285 | 0.9233915806
1 0.9351260629 0.63382 0.4447967700 0.8403 18.3616535664 | 0.8262460232
2 0.7940604867 0.73698 0.3519050666 0.9210 18.2121853828 | 0.9434213638
3 0.83742859096 0.71178 0.2917675954 0.9321 18.1142337322 | 0.8953492641
4 0.8279364331 0.72147 0.2627580354 0.9370 18.1253108978 | 1.0465781689
12 5 09761598248 0.61800 0.4038411881 0.8632 18.7331497669 | 0.9354093075
1 0.9674865948 0.61343 0.5033045169 0.7703 19.3536708355 | 1.0706138611
2 1.0183979076 0.60248 0.4298628436 0.8768 19.4573175907 | 1.0005073547
3 1.0321251795 0.60100 0.5325946084 0.8185 18.9569797516 | 0.9223902225
4 1.0521190786 0.59095 0.5141264089 0.8411 19.2089436054 | 0.9013571739
13 5 1.1108988741 0.56363 0.5437128160 0.8067 19.5594577789 | 0.8793241978
| 1.0881610775 0.58277 0.5018508643 0.8246 20.6444578171 | 0.9424192905
2 1.1588585998 0.57170 0.5005671941 0.8472 20.9453599453 | 0.5484307766
3 1.0995121144 0.60347 0.4202383036 0.8897 20.3382055759 | 0.8773214817
4 0.9848551562 0.63357 0.4441310250 0.8555 20.1404712200 | 1.0385665894
14 5 1.2150164828 0.48113 0.7875393070 0.6779 20.5979466438 | 0.9464261532
1 1.4786887091 0.39595 0.8483160892 0.6665 21.4142525196 | 0.9484291077
2 1.2751463499 0.48487 0.6626521770 0.7529 21.5124135017 | 0.9694607258
3 1.1784563767 0.53365 0.5519347743 0.8112 21.7416028976 | 1.0906434059
4 1,2336262383 0.51022 0.6103326198 0.7871 21.1658918858 | 1.0365622044
15 5 1.3656753891 0.41440 0.7867620425 0.7032 22.2593209743 | 0.9203870296
1 1.4926853513 0.34880 1.1679810839 0.4840 27.3915155465 | 1.3115804859
2 1.5590110199 0.35637 1.3394787617 0.3540 27.3366482258 | 1.0545887947
3 1.5891498513 0.32928 1.2762476919 0.4590 27.2869524956 | 1.0615987778
4 1.5825883313 0.33440 1.5216624249 0.3763 26.9204907417 | 13019621372
20 5 1.5389533828 0.32475 1.1904166975 0.4581 27.5715913773 | 1.2498838502
i 1.6517305573 0.31585 1.6548585136 0.2716 33.1309075356 | 1.2939496040
2 2.0474747661 0.19950 1.9707054794 0.2098 32.3549604416 | 1.2088217735
3 1.6412101247 0.35073 15744331915 0.2501 33.2229862213 | 1.6114280224
4 1.6898477771 0.30780 1.6917536232 0.2306 32.2956786156 | 1.2138276100
25 5 1.6238397265 0.30723 1.4481904781 0.3386 32.8607902527 | 1.2188365459
1 2.3016995107 0.11207 2.3013154472 0.1135 60.4918143749 | 2.2363696098
2 2,3015930289 0.11088 2.3013612835 0.1135 650.9038238525 | 2.1532454491
3 2.3017557542 0.11118 2.3012206108 0.1135 60.4975032806 | 2.0991632938
4 2.3016863631 0.11267 2.3016345276 0.1135 61.0069224834 | 1.9525426098
50 5 2.3017739380 0.11180 2.3011729546 0.1135 60.8205385208 | 2.0581014156
1 2.3016960809 0.10990 2.3009783829 0.1135 86.5189082623 | 2.9003698826
2 2.3017117537 0.11150 2.3010672119 0.1135 87.3233568668 | 2.9384269714
3 2.3016833822 0.11133 2.3014576237 0.1135 87.7148933411 | 2.9123883247
4 2.3016293376 0.11165 2.3011518494 0.1135 86.4512465000 | 2.7922058105
75 5 2.3016141506 0.11178 2.3012833214 0.1135 87.0125033855 | 3.0325694084
1 2.3016867704 0.11108 2.3011141453 0.1135 112.7378304005 | 3.6124429703
2 2.3015566792 0.11118 2.3012032707 0.1135 114.6324505806 | 3.6905617714
3 2.3017085089 0.11223 2.3010528328 0.1135 112.3642838001 | 3.7606658936
4 2.3015608776 0.11127 2.3011943260 0.1135 113.2083222866 | 3.6975712776
100 | S 2.3015601994 0.11025 2.3010756828 0.1135 113.7863795757 | 3.7065844536
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3.4 Processed Data

Table 3. Processed data for all depths

Average Train | Train Cross-Entropy | Average | Train Accuracy | Average Test | Test Cross-Entropy | Average | Test Accuracy
Cross-Entropy| Loss Standard Train Standard Cross-Entropy | Loss Standard Test Standard
Depth Loss Deviation Accuracy Deviation Loss Deviation Accuracy Deviation

0 | 0.4705478366 0.003020960 0.87704 | 0.0016773458 | 0.306676750 0.0011584471 0.9149 0.0009549869
1 |0.1927300913 0.001214872 0.94173 | 0.0001738454 | 0.095976090 0.0054624313 0.9704 0.0020759576
2 | 0.2017345583 0.002110273 0.93876 | 0.0011383419 | 0.104065245 0.0050557063 0.9677 0.0025938389
3 | 0.2311197670 0.002866709 0.92973 | 0.0010231759 | 0.122102930 0.0128713564 0.9633 0.0036350516
4 | 0.2669664664 0.001952608 0.92012 | 0.0009490931 | 0.128755401 0.0064194119 0.9623 0.0017522557
5 | 0.3008170921 0.002073584 0.91120 | 0.0010829999 | 0.147566972 0.0178378179 0.9576 0.0038427074
6 | 0.3412458204 0.005730995 0.90112 | 0.0019198843 | 0.160512545 0.0278713448 0.9556 0.0055692424
7 | 0.3874510264 0.009699346 0.88688 | 0.0040768806 | 0.166489328 0.0128912898 0.9568 | 0.0032517072
8 | 0.4434418120 0.006647375 0.87026 | 0.0022276944 | 0.187085390 0.0154921131 0.9539 | 0.0014732277
9 |0.5249377372 0.005514742 0.84115 | 0.0024539628 | 0.194514126 0.0109060966 0.9497 0.0017679367
10 | 0.6301178359 0.022187609 0.79996 | 0.0126437582 | 0.231122277 0.0199546939 0.9426 0.0051072497
11 ([ 0.7571356192 0.040362035 0.74171 | 0.0272235654 | 0.264325252 0.0224379010 0.9333 0.0091220612
12 | 0.8741423434 0.069314568 0.68441 | 0.0486958413 | 0.351013731 0.0676549562 0.8987 0.0393714313
13 | 1.0362055269 0.046665596 0.59430 | 0.0169092184 | 0.504720239 0.0399787731 0.8227 0.0354535414
14 | 1.1092806861 0.077021041 0.57453 | 0.0512278197 | 0.530865340 0.1322138606 0.8180 0.0735751969
15 | 1.3063186126 0.105678115 0.46782 | 0.0537413218 | 0.691999541 0.1100578827 0.7442 0.0531476961
20 | 1.5524775873 0.034791416 0.33872 | 0.0119656611 | 1.299157332 0.1270361518 0.4263 0.0512583808
25 | 1.7308205903 0.159799132 0.29622 | 0.0509258062 | 1.667988257 0.1728806024 0.2681 0.0453246776
50 |2.3017017190 0.000063545 0.11172 | 0.0006341574 | 2.301340965 0.0001612176 0.1135 0
75 | 2.3016669410 0.000038284 0.11123 | 0.0006833740 | 2.301187678 0.0001682965 0.1135 0
100 | 2.3016146071 0.000068158 0.11120 | 0.0006306434 | 2.301128052 0.0000610638 0.1135 0
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3.5 Graphs

Figure 3

The Relationship between the Depth of a Neural Network and its Test Accuracy for All Depths
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Figure 4
The Relationship between the Depth of a Neural Network and its Test Accuracy for Depths
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3.6 Trends in Test Accuracy

As predicted, as can be seen in figures 3 and 4, test accuracy was maximised at a non-zero value
and then started decreasing with the addition of more layers. The trend, however, was not
uniform and could not be well modelled with a trendline. Test accuracy was maximised at 1
hidden layer—97.04% accuracy, after which it decreased to approximately 95% until 10 hidden

layers, after which it started decreasing dramatically (see table 3).

From somewhere between depths 25 and 50 onwards, even after training, the neural network
fared no better than random guessing. As in fable 3, all depths including and greater than 50

hidden layers achieved an average accuracy of 11.35%. Assuming an evenly balanced test set,
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guessing accuracy would be an expected 10%—the same value as randomly picking an integer
from 0-9 and predicting that for all images. Since all these networks achieved the same
accuracies with no deviation, it is likely the were able to memorise the most common target in
the train set. Since the train and test set are from the same distribution, this value was likely the

most common test target as well, explaining the slightly higher than expected guess accuracy.

As deeper networks are better at finding hidden features—Ilearning “features at various levels of
abstraction”—in data, [9] building a larger feature set from a train set which may not match a
validation/test set, it may be expected that deeper neural networks become more prone to
overfitting. However, overfitting does not explain the performance loss as training accuracy also

falls with depth.

On the other hand, decreased accuracy at higher depths can be explained by vanishing or
exploding gradients. In both cases, the deep network cannot converge on the global minimum.
Vanishing gradients lead to being stuck, and exploding gradients cause divergence. In either
scenario, test accuracy drops substantially. These occur more severely in deep networks than
shallow ones, as small or large gradients carry multiplicatively through all layers by
backpropagation. [22] As a result, since the learning rate was fixed (and thus unable to raise
vanishing gradients or lower exploding gradients to useful values), their occurrence could
explain decreased performance with depth and the equivalent-to-guessing accuracy of the

deepest networks tested.
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Alternatively, decreased accuracy with increased depth could be caused by the degradation of the
neural networks due to the low complexity of the MNIST handwritten digit dataset. As its
creators suggest, it has become too simple for most new deep learning methods. [23] High
accuracy (91.49%) with logistic regression (no hidden layers and fewer neurons) supports this as
few parameters are needed to approximate a function to classify digits. An optimal depth
(number of hidden layers with maximum test accuracy) with one hidden layer further supports
this, as deeper networks find greater complexity in datasets—one hidden layer may find edges or

loops in numbers and that information on—which is more effective for more complex datasets.

Low complexity could hence explain the success of shallow networks over deeper ones as deep
networks “degrade”. Degradation occurs when initial layers (the first layer in this case) learn
enough from the train set to generalise well, and accuracy becomes saturated. Later layers are
identity maps of this first layer and are copied from this layer. However, additional layers do not
necessarily fit the layer of saturated accuracy, [11] and hence the network ‘forgets’ or “‘misfits’

what it learns in earlier layers, causing the output layer to have significantly lower accuracy.

Accuracy saturating at one hidden layer explains why it is the optimal depth. The degradation of
accuracy is dependent on how well later layers fit previous, better saturated layers. [11] The
trend effects of this degradation seem to increase with depth, as seen in figures 3 and 4, as

accuracy falls more dramatically with increasing depth.
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Another possibility is that networks were bottlenecked, becoming too narrow as they become
deeper since the number of neurons is approximately fixed. Hidden layers with too few neurons
have fewer weights and nodes to relay information to the next layer. Hence the 18 neurons
(depth 100) in the first layer cannot capture all complexities the in training data and hence pass
on incomplete information to the next layer, which faces the same issue. Thus the fit becomes
progressively worse through layers until perhaps the only information left is the most common
number. Bottlenecking could hence explain why test accuracy decreases with additional depth
after the optimal point. Since the number of neurons per layer is proportional to i where n is the
number of hidden layers, increased bottlenecking could also explain why test accuracy decreases

more significantly at higher depths.

3.7 Evaluation of Investigation

Despite producing coherent results, this investigation had a variety of shortfalls that should be

discussed.

In order to isolate the effects of network depth, a decision was made to keep all other
hyperparameters constant (see section 2.1). However, at varying depths, choices in other
hyperparameters influence test accuracy. For instance, since wider networks are better at
memorisation [9], using 18000 neurons could have resulted in worse test accuracy in shallower
networks. The optimal depth of 1 hidden layer may not hold true for 18000 neurons as a network

wide may simply memorise training data, increasing overfitting and lowering test accuracy.
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Conversely, an 18 neuron network with one hidden layer would have likely performed worse

than logistic regression due to bottlenecking.

Similarly with the number of epochs trained, as shown below, different network depths and

parameter initialisations impact its rate of convergence.

Fioure 5 [24]

Graphs of the relationship of test accuracy and train epochs on three different convolutional

neural networks
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Thus, it is possible that deeper networks could achieve higher accuracy than shallower networks
given more epochs to train as shallower networks are better at memorisation, whereas deeper

networks can find more patterns in data, [9] which requires more training epochs.
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Moreover, as described in the analysis (section 3.6), a fixed learning rate made deep networks
more susceptible to vanishing or exploding gradients. [22] A variable learning rate would
therefore have likely had some effect on the data, potentially raising the test accuracy of deeper

networks.

Non-depth hyperparameters were decided somewhat arbitrarily, ie. without exploring their
effects, and they have varying influence on test accuracy based on the network depth. In other
words, the optimum accuracy of any network depth is dependent on the combination of
hyperparameters rather than simply depth. As a result, the scope of investigation narrows to
exploring a smaller region of hyperparameter space for MNIST digit classification, and thus all
results are relevant to this particular combination of hyperparameters, where only depth is
variable. Exploring variations of other parameters as well as depth would broaden the scope of
investigation by exploring more dimensions of hyperparameter space. Comparing the test
accuracy of various depths, each with an optimal combination of other hyperparameters, would

allow the results to generalise more effectively.

This investigation was conducted with the hardware described in the method (see section 2.2).
Most industrial applications require far more powerful machines to train deep neural networks in
a reasonable time, particularly for more complex tasks with larger datasets. Such setups include
multiple, more powerful GPU’s and CPU’s, more memory and RAM, and other specialised
hardware. [25] Considering the low complexity [23] and small-size of the MNIST handwritten

dataset, it is unclear how significant an impact industrial hardware would have had on test
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accuracy. However, the results of this investigation could be more relevant and useful by

studying network architectures with appropriate hardware.

4 Conclusion

This paper investigated the effects of a neural network’s depth, measured as its number of hidden
layers, on its test accuracy on the MNIST handwritten digit dataset. Five neural networks of
various depths were built, trained, and tested with a Python script using the TensorFlow-gpu

Keras sequential implementation of neural networks.

The results of the investigation, seen in figures 3 and 4, demonstrated that test accuracy was
maximised with one hidden layer at 97.04%, hovered around 95% until 10 hidden layers, after
which it decreased dramatically until 25-50 hidden layers, after which it was equivalent to
expected guessing accuracy. These patterns in test accuracy could be explained by low data
complexity, which led to degradation of identity maps propagating forward through the network
[11], by vanishing or exploding gradients hampering convergence in deeper networks [22], or by

bottlenecking caused by decreasing width due to a fixed number of neurons.

These results are, however, limited to a particular region of hyperparameter space other
hyperparameters of the neural networks were controlled. Hence, while the results are useful for
this region, more research is necessary to see the effects of depth across hyperparameter space ie,

with different network hyperparameter configurations. Similarly, further clarity can be gained on
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the reason for particular optimum depths and deep networks’ performance degradation through

the same investigation of depth on other, more complex datasets.



28

5 References

[1] Oracle Big Data. Slowly Changing Dimensions. Oracle.

https://www.oracle.com/big-data/guide/what-is-big-data.html

[2] What is big data analytics? - Definition from Whatls.com. SearchBusinessAnalytics.

https://searchbusinessanalvtics.techtarget.com/definition/big-data-analvtics

[3] What is Deep Learning? (2016, September 22). Machine Learning Mastery.

https://machinelearningmastery.com/what-is-deep-learning/

[4] ShChadet, D. S. (2017, December 20). Modern Theory of Deep Learning: Why Does It Work
so Well. Medium.com. Medium.

https://medium.com/mlreview/modern-theory-of-deep-learning-why-does-it-works-so-well-9ee |

7162808

[5] THE MNIST DATABASE. MNIST handwritten digit database, Yann LeCun, Corinna Cortes

and Chris Burges. http://yann.lecun.com/exdb/mnist/

[6] Nielsen, & A., M. (1970, January 1). Neural Networks and Deep Learning. Neural networks

and deep learning. Determination Press. http://neuralnetworksanddeeplearning.com/chap1.html




29

[7] Ng, Andrew. (2011, August 15). Week 4: Model representation I. Machine Learning -
Stanford University. Coursera.

https://www.coursera.org/learn/machine-learning/lecture/ka3ijK/model-representation-i.

[8] Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5), 359-366. doi:10.1016/0893-6080(89)90020-8.

[9] J. O'Brien Antognini (https://stats.stackexchange.com/users/115448/j-obrien-antognini).

(2016, July 13). Why are neural networks becoming deeper, but not wider? StackExchange.

https://stats.stackexchange.com/q/223637

[10] Ng, Andrew. (2011, August 15). Week 5: Backpropagation algorithm. Machine Learning -
Stanford University. Coursera.

https://www.coursera.org/learn/machine-learning/lecture/ka3ijK/model-representation-i.

[11] He, Zhang, Ren, & Sun. (2015, December 10). Deep Residual Learning for Image
Recognition. [1512.03385] Deep Residual Learning for Image Recognition.

https://arxiv.org/abs/1512.03385

[12] Zulkifli, H. (2018, January 21). Understanding Learning Rates and How It Improves

Performance in Deep Learning. Towards Data Science. Towards Data Science.



30

https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-

in-deep-learning-d0d4059c1c10

[13] tf.train.AdamOptimizer | TensorFlow. TensorFlow.

https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer

[14] Sebastian Ruder. (2018, May 31). An overview of gradient descent optimization algorithms.

Sebastian Ruder. Sebastian Ruder. http://ruder.io/optimizing-sradient-descent/index.html

[15] Kingma, P., D., Jimmy, & Ba. (2017, January 30). Adam: A Method for Stochastic
Optimization. [2412.6980] Adam: A Method for Stochastic Optimization.

https://arxiv.org/abs/1412.6980

[16] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014,
January 1). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of

Machine Learning Research. http:/jmlr.org/papers/v15/srivastaval4a.html

[17] Budhiraja, A., & Budhiraja, A. (2016, December 15). Learning Less to Learn
Better - Dropout in (Deep) Machine learning. Medium.com. Medium.

https://medium.com/(@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-b

etter-dropout-in-deep-machine-learning-74334da4bfc5.




31

[18] Soares, R. G. F., & Pereira, E. J. S. (2016). On the performance of pairings of activation and
loss functions in neural networks. 2016 International Joint Conference on Neural Networks

(IJCNN). doi:10.1109/1jcnn.2016.7727216. https://iecexplore.ieee.org/document/7727216

[19] Daniel Godoy. (2018, November 21). Understanding binary cross-entropy / log loss: a
visual explanation. Towards Data Science. Towards Data Science.

https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanatio

n-a3ac6025181a.

[20] Get Started with Tensorflow. TensorFlow. https://www.tensorflow.org/tutorials/

[21] TensorFlow. TensorFlow. https://www.tensorflow.org/

[22] Nielsen, & A., M. Neural Networks and Deep Learning. Neural networks and deep learning.

Determination Press. http://neuralnetworksanddeeplearning.com/chap35.html

[23] Zalandoresearch. (2018, October 5). zalandoresearch/fashion-mnist. GitHub.

https://github.com/zalandoresearch/fashion-mnist

[24] Jawahar, C., Purini, S., & Yasaswi, J. Predicting the Training Time of Deep Neural
Networks. IIIT.

https://researchweb.iiit.ac.in/~jitendra. katta/papers/predicting_training_time_final.pdf




32

[25] Sverdlik, Y. (2017, February 6). A Cloud for the Artificial Mind: This Data Center is
Designed for Deep Learning. Data Center Knowledge.

https://www.datacenterknowledge.com/archives/2017/02/06/this-data-center-is-designed-for-dee

p-learning

[26] Ren, S1., J., Xu, & Li. (2015, January 29). On Vectorization of Deep Convolutional Neural
Networks for Vision Tasks. [1501.07338] On Vectorization of Deep Convolutional Neural

Networks for Vision Tasks. https://arxiv.org/abs/1501.07338

[27] A History of Deep Learning. (2018, September 18). Import.io.

http://www.import.io/post/history-of-deep-learning/.




6 Appendi

Appendix 1: Investigation source code
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